nltk.translate.bleu¶
- nltk.translate.bleu(references, hypothesis, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=None, auto_reweigh=False)[source]¶
Calculate BLEU score (Bilingual Evaluation Understudy) from Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. “BLEU: a method for automatic evaluation of machine translation.” In Proceedings of ACL. https://www.aclweb.org/anthology/P02-1040.pdf
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'military', 'always', ... 'obeys', 'the', 'commands', 'of', 'the', 'party']
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops', ... 'forever', 'hearing', 'the', 'activity', 'guidebook', ... 'that', 'party', 'direct']
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'military', 'will', 'forever', ... 'heed', 'Party', 'commands']
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'military', 'forces', 'always', ... 'being', 'under', 'the', 'command', 'of', 'the', ... 'Party']
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'army', 'always', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'party']
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) 0.5045...
If there is no ngrams overlap for any order of n-grams, BLEU returns the value 0. This is because the precision for the order of n-grams without overlap is 0, and the geometric mean in the final BLEU score computation multiplies the 0 with the precision of other n-grams. This results in 0 (independently of the precision of the other n-gram orders). The following example has zero 3-gram and 4-gram overlaps:
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) 0.0
To avoid this harsh behaviour when no ngram overlaps are found a smoothing function can be used.
>>> chencherry = SmoothingFunction() >>> sentence_bleu([reference1, reference2, reference3], hypothesis2, ... smoothing_function=chencherry.method1) 0.0370...
The default BLEU calculates a score for up to 4-grams using uniform weights (this is called BLEU-4). To evaluate your translations with higher/lower order ngrams, use customized weights. E.g. when accounting for up to 5-grams with uniform weights (this is called BLEU-5) use:
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.) >>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) 0.3920...
Multiple BLEU scores can be computed at once, by supplying a list of weights. E.g. for computing BLEU-2, BLEU-3 and BLEU-4 in one computation, use: >>> weights = [ … (1./2., 1./2.), … (1./3., 1./3., 1./3.), … (1./4., 1./4., 1./4., 1./4.) … ] >>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS [0.7453…, 0.6240…, 0.5045…]
- Parameters
references (list(list(str))) – reference sentences
hypothesis (list(str)) – a hypothesis sentence
weights (tuple(float) / list(tuple(float))) – weights for unigrams, bigrams, trigrams and so on (one or a list of weights)
smoothing_function (SmoothingFunction) –
auto_reweigh (bool) – Option to re-normalize the weights uniformly.
- Returns
The sentence-level BLEU score. Returns a list if multiple weights were supplied.
- Return type
float / list(float)