nltk.translate.IBMModel5

class nltk.translate.IBMModel5[source]

Bases: IBMModel

Translation model that keeps track of vacant positions in the target sentence to decide where to place translated words

>>> bitext = []
>>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small']))
>>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big']))
>>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small']))
>>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small']))
>>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house']))
>>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book']))
>>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book']))
>>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book']))
>>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize']))
>>> src_classes = {'the': 0, 'a': 0, 'small': 1, 'big': 1, 'house': 2, 'book': 2, 'is': 3, 'was': 3, 'i': 4, 'summarize': 5 }
>>> trg_classes = {'das': 0, 'ein': 0, 'haus': 1, 'buch': 1, 'klein': 2, 'groß': 2, 'ist': 3, 'war': 3, 'ja': 4, 'ich': 5, 'fasse': 6, 'zusammen': 6 }
>>> ibm5 = IBMModel5(bitext, 5, src_classes, trg_classes)
>>> print(round(ibm5.head_vacancy_table[1][1][1], 3))
1.0
>>> print(round(ibm5.head_vacancy_table[2][1][1], 3))
0.0
>>> print(round(ibm5.non_head_vacancy_table[3][3][6], 3))
1.0
>>> print(round(ibm5.fertility_table[2]['summarize'], 3))
1.0
>>> print(round(ibm5.fertility_table[1]['book'], 3))
1.0
>>> print(ibm5.p1)
0.033...
>>> test_sentence = bitext[2]
>>> test_sentence.words
['das', 'buch', 'ist', 'ja', 'klein']
>>> test_sentence.mots
['the', 'book', 'is', 'small']
>>> test_sentence.alignment
Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)])
MIN_SCORE_FACTOR = 0.2

Alignments with scores below this factor are pruned during sampling

__init__(sentence_aligned_corpus, iterations, source_word_classes, target_word_classes, probability_tables=None)[source]

Train on sentence_aligned_corpus and create a lexical translation model, vacancy models, a fertility model, and a model for generating NULL-aligned words.

Translation direction is from AlignedSent.mots to AlignedSent.words.

Parameters
  • sentence_aligned_corpus (list(AlignedSent)) – Sentence-aligned parallel corpus

  • iterations (int) – Number of iterations to run training algorithm

  • source_word_classes (dict[str]: int) – Lookup table that maps a source word to its word class, the latter represented by an integer id

  • target_word_classes (dict[str]: int) – Lookup table that maps a target word to its word class, the latter represented by an integer id

  • probability_tables (dict[str]: object) – Optional. Use this to pass in custom probability values. If not specified, probabilities will be set to a uniform distribution, or some other sensible value. If specified, all the following entries must be present: translation_table, alignment_table, fertility_table, p1, head_distortion_table, non_head_distortion_table, head_vacancy_table, non_head_vacancy_table. See IBMModel, IBMModel4, and IBMModel5 for the type and purpose of these tables.

reset_probabilities()[source]
set_uniform_probabilities(sentence_aligned_corpus)[source]

Set vacancy probabilities uniformly to 1 / cardinality of vacancy difference values

train(parallel_corpus)[source]
sample(sentence_pair)[source]

Sample the most probable alignments from the entire alignment space according to Model 4

Note that Model 4 scoring is used instead of Model 5 because the latter is too expensive to compute.

First, determine the best alignment according to IBM Model 2. With this initial alignment, use hill climbing to determine the best alignment according to a IBM Model 4. Add this alignment and its neighbors to the sample set. Repeat this process with other initial alignments obtained by pegging an alignment point. Finally, prune alignments that have substantially lower Model 4 scores than the best alignment.

Parameters

sentence_pair (AlignedSent) – Source and target language sentence pair to generate a sample of alignments from

Returns

A set of best alignments represented by their AlignmentInfo and the best alignment of the set for convenience

Return type

set(AlignmentInfo), AlignmentInfo

prune(alignment_infos)[source]

Removes alignments from alignment_infos that have substantially lower Model 4 scores than the best alignment

Returns

Pruned alignments

Return type

set(AlignmentInfo)

hillclimb(alignment_info, j_pegged=None)[source]

Starting from the alignment in alignment_info, look at neighboring alignments iteratively for the best one, according to Model 4

Note that Model 4 scoring is used instead of Model 5 because the latter is too expensive to compute.

There is no guarantee that the best alignment in the alignment space will be found, because the algorithm might be stuck in a local maximum.

Parameters

j_pegged (int) – If specified, the search will be constrained to alignments where j_pegged remains unchanged

Returns

The best alignment found from hill climbing

Return type

AlignmentInfo

prob_t_a_given_s(alignment_info)[source]

Probability of target sentence and an alignment given the source sentence

maximize_vacancy_probabilities(counts)[source]
MIN_PROB = 1e-12
best_model2_alignment(sentence_pair, j_pegged=None, i_pegged=0)[source]

Finds the best alignment according to IBM Model 2

Used as a starting point for hill climbing in Models 3 and above, because it is easier to compute than the best alignments in higher models

Parameters
  • sentence_pair (AlignedSent) – Source and target language sentence pair to be word-aligned

  • j_pegged (int) – If specified, the alignment point of j_pegged will be fixed to i_pegged

  • i_pegged (int) – Alignment point to j_pegged

init_vocab(sentence_aligned_corpus)[source]
maximize_fertility_probabilities(counts)[source]
maximize_lexical_translation_probabilities(counts)[source]
maximize_null_generation_probabilities(counts)[source]
neighboring(alignment_info, j_pegged=None)[source]

Determine the neighbors of alignment_info, obtained by moving or swapping one alignment point

Parameters

j_pegged (int) – If specified, neighbors that have a different alignment point from j_pegged will not be considered

Returns

A set neighboring alignments represented by their AlignmentInfo

Return type

set(AlignmentInfo)

prob_of_alignments(alignments)[source]