nltk.translate.IBMModel5¶
- class nltk.translate.IBMModel5[source]¶
Bases:
IBMModel
Translation model that keeps track of vacant positions in the target sentence to decide where to place translated words
>>> bitext = [] >>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small'])) >>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big'])) >>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small'])) >>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small'])) >>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house'])) >>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book'])) >>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book'])) >>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book'])) >>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize'])) >>> src_classes = {'the': 0, 'a': 0, 'small': 1, 'big': 1, 'house': 2, 'book': 2, 'is': 3, 'was': 3, 'i': 4, 'summarize': 5 } >>> trg_classes = {'das': 0, 'ein': 0, 'haus': 1, 'buch': 1, 'klein': 2, 'groß': 2, 'ist': 3, 'war': 3, 'ja': 4, 'ich': 5, 'fasse': 6, 'zusammen': 6 }
>>> ibm5 = IBMModel5(bitext, 5, src_classes, trg_classes)
>>> print(round(ibm5.head_vacancy_table[1][1][1], 3)) 1.0 >>> print(round(ibm5.head_vacancy_table[2][1][1], 3)) 0.0 >>> print(round(ibm5.non_head_vacancy_table[3][3][6], 3)) 1.0
>>> print(round(ibm5.fertility_table[2]['summarize'], 3)) 1.0 >>> print(round(ibm5.fertility_table[1]['book'], 3)) 1.0
>>> print(ibm5.p1) 0.033...
>>> test_sentence = bitext[2] >>> test_sentence.words ['das', 'buch', 'ist', 'ja', 'klein'] >>> test_sentence.mots ['the', 'book', 'is', 'small'] >>> test_sentence.alignment Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)])
- MIN_SCORE_FACTOR = 0.2¶
Alignments with scores below this factor are pruned during sampling
- __init__(sentence_aligned_corpus, iterations, source_word_classes, target_word_classes, probability_tables=None)[source]¶
Train on
sentence_aligned_corpus
and create a lexical translation model, vacancy models, a fertility model, and a model for generating NULL-aligned words.Translation direction is from
AlignedSent.mots
toAlignedSent.words
.- Parameters
sentence_aligned_corpus (list(AlignedSent)) – Sentence-aligned parallel corpus
iterations (int) – Number of iterations to run training algorithm
source_word_classes (dict[str]: int) – Lookup table that maps a source word to its word class, the latter represented by an integer id
target_word_classes (dict[str]: int) – Lookup table that maps a target word to its word class, the latter represented by an integer id
probability_tables (dict[str]: object) – Optional. Use this to pass in custom probability values. If not specified, probabilities will be set to a uniform distribution, or some other sensible value. If specified, all the following entries must be present:
translation_table
,alignment_table
,fertility_table
,p1
,head_distortion_table
,non_head_distortion_table
,head_vacancy_table
,non_head_vacancy_table
. SeeIBMModel
,IBMModel4
, andIBMModel5
for the type and purpose of these tables.
- set_uniform_probabilities(sentence_aligned_corpus)[source]¶
Set vacancy probabilities uniformly to 1 / cardinality of vacancy difference values
- sample(sentence_pair)[source]¶
Sample the most probable alignments from the entire alignment space according to Model 4
Note that Model 4 scoring is used instead of Model 5 because the latter is too expensive to compute.
First, determine the best alignment according to IBM Model 2. With this initial alignment, use hill climbing to determine the best alignment according to a IBM Model 4. Add this alignment and its neighbors to the sample set. Repeat this process with other initial alignments obtained by pegging an alignment point. Finally, prune alignments that have substantially lower Model 4 scores than the best alignment.
- Parameters
sentence_pair (AlignedSent) – Source and target language sentence pair to generate a sample of alignments from
- Returns
A set of best alignments represented by their
AlignmentInfo
and the best alignment of the set for convenience- Return type
set(AlignmentInfo), AlignmentInfo
- prune(alignment_infos)[source]¶
Removes alignments from
alignment_infos
that have substantially lower Model 4 scores than the best alignment- Returns
Pruned alignments
- Return type
set(AlignmentInfo)
- hillclimb(alignment_info, j_pegged=None)[source]¶
Starting from the alignment in
alignment_info
, look at neighboring alignments iteratively for the best one, according to Model 4Note that Model 4 scoring is used instead of Model 5 because the latter is too expensive to compute.
There is no guarantee that the best alignment in the alignment space will be found, because the algorithm might be stuck in a local maximum.
- Parameters
j_pegged (int) – If specified, the search will be constrained to alignments where
j_pegged
remains unchanged- Returns
The best alignment found from hill climbing
- Return type
- prob_t_a_given_s(alignment_info)[source]¶
Probability of target sentence and an alignment given the source sentence
- MIN_PROB = 1e-12¶
- best_model2_alignment(sentence_pair, j_pegged=None, i_pegged=0)[source]¶
Finds the best alignment according to IBM Model 2
Used as a starting point for hill climbing in Models 3 and above, because it is easier to compute than the best alignments in higher models
- Parameters
sentence_pair (AlignedSent) – Source and target language sentence pair to be word-aligned
j_pegged (int) – If specified, the alignment point of j_pegged will be fixed to i_pegged
i_pegged (int) – Alignment point to j_pegged
- neighboring(alignment_info, j_pegged=None)[source]¶
Determine the neighbors of
alignment_info
, obtained by moving or swapping one alignment point- Parameters
j_pegged (int) – If specified, neighbors that have a different alignment point from j_pegged will not be considered
- Returns
A set neighboring alignments represented by their
AlignmentInfo
- Return type
set(AlignmentInfo)