nltk.tag.ClassifierBasedTagger¶
- class nltk.tag.ClassifierBasedTagger[source]¶
Bases:
SequentialBackoffTagger
,FeaturesetTaggerI
A sequential tagger that uses a classifier to choose the tag for each token in a sentence. The featureset input for the classifier is generated by a feature detector function:
feature_detector(tokens, index, history) -> featureset
Where tokens is the list of unlabeled tokens in the sentence; index is the index of the token for which feature detection should be performed; and history is list of the tags for all tokens before index.
Construct a new classifier-based sequential tagger.
- Parameters
feature_detector – A function used to generate the featureset input for the classifier:: feature_detector(tokens, index, history) -> featureset
train – A tagged corpus consisting of a list of tagged sentences, where each sentence is a list of (word, tag) tuples.
backoff – A backoff tagger, to be used by the new tagger if it encounters an unknown context.
classifier_builder – A function used to train a new classifier based on the data in train. It should take one argument, a list of labeled featuresets (i.e., (featureset, label) tuples).
classifier – The classifier that should be used by the tagger. This is only useful if you want to manually construct the classifier; normally, you would use train instead.
backoff – A backoff tagger, used if this tagger is unable to determine a tag for a given token.
cutoff_prob – If specified, then this tagger will fall back on its backoff tagger if the probability of the most likely tag is less than cutoff_prob.
- __init__(feature_detector=None, train=None, classifier_builder=<bound method NaiveBayesClassifier.train of <class 'nltk.classify.naivebayes.NaiveBayesClassifier'>>, classifier=None, backoff=None, cutoff_prob=None, verbose=False)[source]¶
- choose_tag(tokens, index, history)[source]¶
Decide which tag should be used for the specified token, and return that tag. If this tagger is unable to determine a tag for the specified token, return None – do not consult the backoff tagger. This method should be overridden by subclasses of SequentialBackoffTagger.
- Return type
str
- Parameters
tokens (list) – The list of words that are being tagged.
index (int) – The index of the word whose tag should be returned.
history (list(str)) – A list of the tags for all words before index.
- feature_detector(tokens, index, history)[source]¶
Return the feature detector that this tagger uses to generate featuresets for its classifier. The feature detector is a function with the signature:
feature_detector(tokens, index, history) -> featureset
See
classifier()
- accuracy(gold)[source]¶
Score the accuracy of the tagger against the gold standard. Strip the tags from the gold standard text, retag it using the tagger, then compute the accuracy score.
- Parameters
gold (list(list(tuple(str, str)))) – The list of tagged sentences to score the tagger on.
- Return type
float
- property backoff¶
The backoff tagger for this tagger.
- classifier()[source]¶
Return the classifier that this tagger uses to choose a tag for each word in a sentence. The input for this classifier is generated using this tagger’s feature detector. See
feature_detector()
- confusion(gold)[source]¶
Return a ConfusionMatrix with the tags from
gold
as the reference values, with the predictions fromtag_sents
as the predicted values.>>> from nltk.tag import PerceptronTagger >>> from nltk.corpus import treebank >>> tagger = PerceptronTagger() >>> gold_data = treebank.tagged_sents()[:10] >>> print(tagger.confusion(gold_data)) | - | | N | | O P | | N J J N N P P R R V V V V V W | | ' E C C D E I J J J M N N N O R P R B R T V B B B B B D ` | | ' , - . C D T X N J R S D N P S S P $ B R P O B D G N P Z T ` | -------+----------------------------------------------------------------------------------------------+ '' | <1> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | , | .<15> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | -NONE- | . . <.> . . 2 . . . 2 . . . 5 1 . . . . 2 . . . . . . . . . . . | . | . . .<10> . . . . . . . . . . . . . . . . . . . . . . . . . . . | CC | . . . . <1> . . . . . . . . . . . . . . . . . . . . . . . . . . | CD | . . . . . <5> . . . . . . . . . . . . . . . . . . . . . . . . . | DT | . . . . . .<20> . . . . . . . . . . . . . . . . . . . . . . . . | EX | . . . . . . . <1> . . . . . . . . . . . . . . . . . . . . . . . | IN | . . . . . . . .<22> . . . . . . . . . . 3 . . . . . . . . . . . | JJ | . . . . . . . . .<16> . . . . 1 . . . . 1 . . . . . . . . . . . | JJR | . . . . . . . . . . <.> . . . . . . . . . . . . . . . . . . . . | JJS | . . . . . . . . . . . <1> . . . . . . . . . . . . . . . . . . . | MD | . . . . . . . . . . . . <1> . . . . . . . . . . . . . . . . . . | NN | . . . . . . . . . . . . .<28> 1 1 . . . . . . . . . . . . . . . | NNP | . . . . . . . . . . . . . .<25> . . . . . . . . . . . . . . . . | NNS | . . . . . . . . . . . . . . .<19> . . . . . . . . . . . . . . . | POS | . . . . . . . . . . . . . . . . <1> . . . . . . . . . . . . . . | PRP | . . . . . . . . . . . . . . . . . <4> . . . . . . . . . . . . . | PRP$ | . . . . . . . . . . . . . . . . . . <2> . . . . . . . . . . . . | RB | . . . . . . . . . . . . . . . . . . . <4> . . . . . . . . . . . | RBR | . . . . . . . . . . 1 . . . . . . . . . <1> . . . . . . . . . . | RP | . . . . . . . . . . . . . . . . . . . . . <1> . . . . . . . . . | TO | . . . . . . . . . . . . . . . . . . . . . . <5> . . . . . . . . | VB | . . . . . . . . . . . . . . . . . . . . . . . <3> . . . . . . . | VBD | . . . . . . . . . . . . . 1 . . . . . . . . . . <6> . . . . . . | VBG | . . . . . . . . . . . . . 1 . . . . . . . . . . . <4> . . . . . | VBN | . . . . . . . . . . . . . . . . . . . . . . . . 1 . <4> . . . . | VBP | . . . . . . . . . . . . . . . . . . . . . . . . . . . <3> . . . | VBZ | . . . . . . . . . . . . . . . . . . . . . . . . . . . . <7> . . | WDT | . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . <.> . | `` | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <1>| -------+----------------------------------------------------------------------------------------------+ (row = reference; col = test)
- Parameters
gold (list(list(tuple(str, str)))) – The list of tagged sentences to run the tagger with, also used as the reference values in the generated confusion matrix.
- Return type
- evaluate_per_tag(gold, alpha=0.5, truncate=None, sort_by_count=False)[source]¶
Tabulate the recall, precision and f-measure for each tag from
gold
or from runningtag
on the tokenized sentences fromgold
.>>> from nltk.tag import PerceptronTagger >>> from nltk.corpus import treebank >>> tagger = PerceptronTagger() >>> gold_data = treebank.tagged_sents()[:10] >>> print(tagger.evaluate_per_tag(gold_data)) Tag | Prec. | Recall | F-measure -------+--------+--------+----------- '' | 1.0000 | 1.0000 | 1.0000 , | 1.0000 | 1.0000 | 1.0000 -NONE- | 0.0000 | 0.0000 | 0.0000 . | 1.0000 | 1.0000 | 1.0000 CC | 1.0000 | 1.0000 | 1.0000 CD | 0.7143 | 1.0000 | 0.8333 DT | 1.0000 | 1.0000 | 1.0000 EX | 1.0000 | 1.0000 | 1.0000 IN | 0.9167 | 0.8800 | 0.8980 JJ | 0.8889 | 0.8889 | 0.8889 JJR | 0.0000 | 0.0000 | 0.0000 JJS | 1.0000 | 1.0000 | 1.0000 MD | 1.0000 | 1.0000 | 1.0000 NN | 0.8000 | 0.9333 | 0.8615 NNP | 0.8929 | 1.0000 | 0.9434 NNS | 0.9500 | 1.0000 | 0.9744 POS | 1.0000 | 1.0000 | 1.0000 PRP | 1.0000 | 1.0000 | 1.0000 PRP$ | 1.0000 | 1.0000 | 1.0000 RB | 0.4000 | 1.0000 | 0.5714 RBR | 1.0000 | 0.5000 | 0.6667 RP | 1.0000 | 1.0000 | 1.0000 TO | 1.0000 | 1.0000 | 1.0000 VB | 1.0000 | 1.0000 | 1.0000 VBD | 0.8571 | 0.8571 | 0.8571 VBG | 1.0000 | 0.8000 | 0.8889 VBN | 1.0000 | 0.8000 | 0.8889 VBP | 1.0000 | 1.0000 | 1.0000 VBZ | 1.0000 | 1.0000 | 1.0000 WDT | 0.0000 | 0.0000 | 0.0000 `` | 1.0000 | 1.0000 | 1.0000
- Parameters
gold (list(list(tuple(str, str)))) – The list of tagged sentences to score the tagger on.
alpha (float) – Ratio of the cost of false negative compared to false positives, as used in the f-measure computation. Defaults to 0.5, where the costs are equal.
truncate (int, optional) – If specified, then only show the specified number of values. Any sorting (e.g., sort_by_count) will be performed before truncation. Defaults to None
sort_by_count (bool, optional) – Whether to sort the outputs on number of occurrences of that tag in the
gold
data, defaults to False
- Returns
A tabulated recall, precision and f-measure string
- Return type
str
- f_measure(gold, alpha=0.5)[source]¶
Compute the f-measure for each tag from
gold
or from runningtag
on the tokenized sentences fromgold
. Then, return the dictionary with mappings from tag to f-measure. The f-measure is the harmonic mean of theprecision
andrecall
, weighted byalpha
. In particular, given the precision p and recall r defined by:p = true positive / (true positive + false negative)
r = true positive / (true positive + false positive)
The f-measure is:
1/(alpha/p + (1-alpha)/r)
With
alpha = 0.5
, this reduces to:2pr / (p + r)
- Parameters
gold (list(list(tuple(str, str)))) – The list of tagged sentences to score the tagger on.
alpha (float) – Ratio of the cost of false negative compared to false positives. Defaults to 0.5, where the costs are equal.
- Returns
A mapping from tags to precision
- Return type
Dict[str, float]
- precision(gold)[source]¶
Compute the precision for each tag from
gold
or from runningtag
on the tokenized sentences fromgold
. Then, return the dictionary with mappings from tag to precision. The precision is defined as:p = true positive / (true positive + false negative)
- Parameters
gold (list(list(tuple(str, str)))) – The list of tagged sentences to score the tagger on.
- Returns
A mapping from tags to precision
- Return type
Dict[str, float]
- recall(gold) Dict[str, float] [source]¶
Compute the recall for each tag from
gold
or from runningtag
on the tokenized sentences fromgold
. Then, return the dictionary with mappings from tag to recall. The recall is defined as:r = true positive / (true positive + false positive)
- Parameters
gold (list(list(tuple(str, str)))) – The list of tagged sentences to score the tagger on.
- Returns
A mapping from tags to recall
- Return type
Dict[str, float]
- tag(tokens)[source]¶
Determine the most appropriate tag sequence for the given token sequence, and return a corresponding list of tagged tokens. A tagged token is encoded as a tuple
(token, tag)
.- Return type
list(tuple(str, str))
- tag_one(tokens, index, history)[source]¶
Determine an appropriate tag for the specified token, and return that tag. If this tagger is unable to determine a tag for the specified token, then its backoff tagger is consulted.
- Return type
str
- Parameters
tokens (list) – The list of words that are being tagged.
index (int) – The index of the word whose tag should be returned.
history (list(str)) – A list of the tags for all words before index.